On Line Colorings of Finite Projective Spaces
نویسندگان
چکیده
In this paper, we prove lower and upper bounds on the achromatic pseudoachromatic indices of n-dimensional finite projective space order q.
منابع مشابه
Line-transitive Collineation Groups of Finite Projective Spaces
A collineation group F of PG(d, q), d >= 3, which is transitive on lines is shown to be 2-transitive on points unless d = 4, q = 2 and ] F ] = 31'5. m m
متن کاملOn Collineation Groups of Finite Projective Spaces
Let V be a vector space of finite dimension n over a finite field GF(q). Let Lk(V ) denote the set of k-dimensional subspaces of V. Several authors have studied groups acting on Lk(V ) for various k. Wagner [9] considered groups which act doubly transitively on LI(V ). Recently Kantor [6] has shown that most groups which act transitively on L2(V) also act doubly transitively on LI(V ). This pap...
متن کاملOn multiple caps in finite projective spaces
In this paper, we consider new results on (k, n)-caps with n > 2. We provide a lower bound on the size of such caps. Furthermore, we generalize two product constructions for (k, 2)-caps to caps with larger n. We give explicit constructions for good caps with small n. In particular, we determine the largest size of a (k, 3)-cap in PG(3, 5), which turns out to be 44. The results on caps in PG(3, ...
متن کاملLine Bundles on Projective Spaces Preliminary Draft
0.1. Notations and Conventions. During this note, we will fix a base field k (e.g. the complex numbers C). The multiplicative group of the field k will be denoted by Gm. All the vector spaces considered will be finite dimensional vector spaces over the field k. For a given vector space V of dimension≥ 1, we will denote the dual vector space, the projective space parameterizing 1-dimensional sub...
متن کاملHeights on the Finite Projective Line
Define the height function h(a) = min{k + (ka mod p) : k = 1, 2, . . . , p − 1} for a ∈ {0, 1, . . . , p − 1.} It is proved that the height has peaks at p, (p+1)/2, and (p+c)/3, that these peaks occur at a = [p/3], (p−3)/2, (p− 1)/2, [2p/3], p − 3, p− 2, and p − 1, and that h(a) ≤ p/3 for all other values of a. 1. Heights on finite projective spaces Let p be an odd prime and let Fp = Z/pZ and F...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Graphs and Combinatorics
سال: 2021
ISSN: ['1435-5914', '0911-0119']
DOI: https://doi.org/10.1007/s00373-021-02288-8